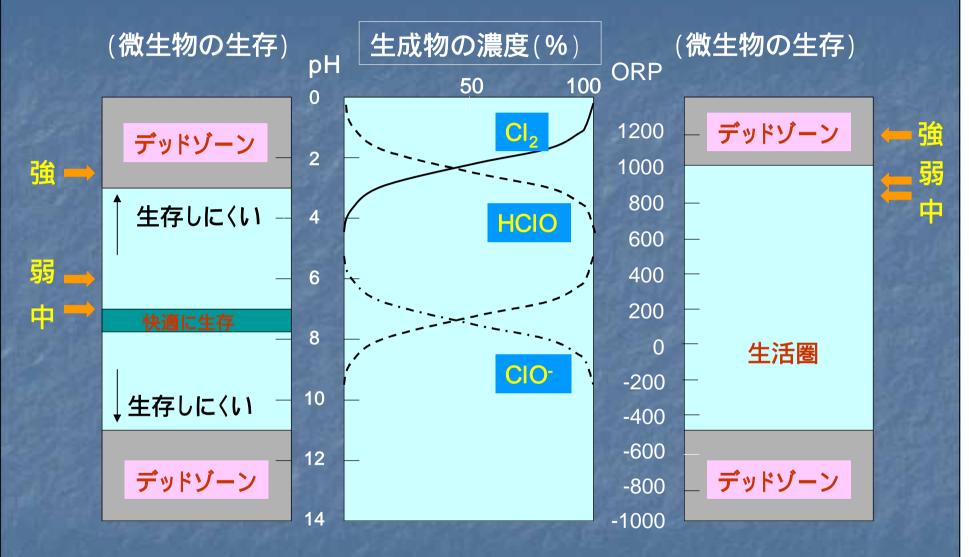
電解中性水APアクア水の 有用性と使用上の留意点

一薬液および電解酸性水との比較一

九州歯科大学 口腔機能科学専攻 口腔機能再建学講座 生体材料学分野 小 園 凱 夫

(筑紫歯科医師会での講演を一部改編)

電解水の特徴


- ・強力な殺菌作用がある
- ・即効性がある
- ・生体組織に対して為害作用をほとんど示さない
- ・ランニングコストが低い
- ・環境や排水汚染を起こさない
- ・時間経過とともに殺菌力が低下する
- ・有機質との接触により殺菌力が低下する
- ・金属を腐食させる可能性がある

特性の比較

	рН	酸化還元電位 (mV)	残留塩素 (ppm)
強酸性水1	2.4 ± 0.05	+1,159 ± 3.2	49 ± 1.7
弱酸性水 <mark>²</mark>	6.5 ± 0.27	+871 ± 12.2	50 ± 2.0
中性水3	7.0 ± 0.07	+849 ± 4.5	38 ± 0.0

- 1スーパーウォーターミニ(ヒラタコーポ)
- 2アシデント(モリタ)
- ³APアクア水(アサヒプリテック)

各種電解水の位置付けと微生物の生存

強:強電解酸性水 弱:弱電解酸性水 中:電解中性水

我々の電解水に関わる研究の変遷と成果

強電解酸性水

歯科器材の消毒に極めて有効

金属に対して著しい腐食作用を示す 歯に対して著しい脱灰・侵蝕作用を示す

弱電解酸性水

消毒効果は同等 腐食作用はやや弱い

電解中性水 (AP水) 消毒効果は同等 腐食作用、歯への影響は小さい 長期間の保存が可能 強力な止血作用を示す 生体に対してさらにやさしい

(応用範囲が広い)

各電解水の比較

	強酸性水	弱酸性水	中性水 (AP水)
殺菌効果	強	カ (差はなし)	
止血効果	あり	あり	強力
におい	強い塩素臭	強い酸臭	水道水程度
金属腐食	著しい	若干あり	比較的軽度
歯の脱灰・侵蝕	著しい	若干あり	なし
有効保存期間(密閉)	約7日間	約30日間	約90日間
生成コスト	1~4円/0	7~25円/2	1.5円/0

印象の消毒

肝炎、エイズ等の院内感染予防対策 ー印象の消毒処理ー

1. 従来法 薬液浸漬処理

グルタールアルデヒド系(ステリハイド、ステリハイド+緩衝化剤) ポピドンヨード系(イソジン、イソジン+エタノール) 次亜塩素酸ナトリウム系(ビューラックス)

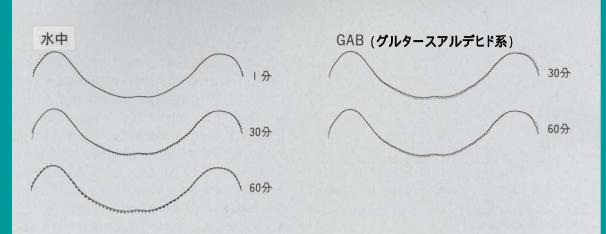
(欠点)長時間浸漬、アルジネート印象の変形、石膏模型の表面あれ

2. 物理的滅菌法

レーザー、マイクロウエーブ(電子レンジ) (欠点)均一な消毒が困難強

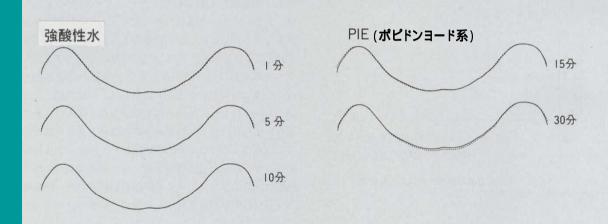
3. 電解水浸漬処理

強電解酸性水、弱電解酸性水、電解中性水(APアクア水) (利点)1分間の浸漬・洗浄で完了、印象の変形なし、 生体および環境にやさしい

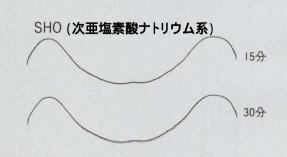

処理後の印象表面から検出された生菌数 (永松ら)

印象	処理前	処理水	流水洗浄		浸漬		超音波洗浄	
			1分	1分	5分	10分	1分	10分
		蒸留水						
		電解水						
		蒸留水						
シリコーンゴム		電解水						

被験菌にはStaphylococcus aureus 209Pを使用


生菌数(個) : ~105、 : ~104、 : ~103、 : ~102、 : ~101、 - : 10~0

(注:電解水は強酸性水、弱酸性水、中性水(AP水)共通)


—:採取直後

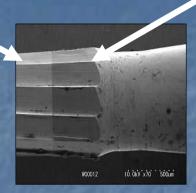
·····: 浸漬処理後

アルジネート印象浸漬処理後に 作製した無歯顎石膏模型の断面 形状(山中6)

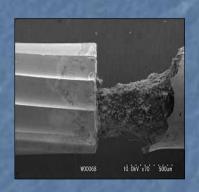
10分以上の浸漬で変形が見られる。

歯科用金属製 インスツルメントの消毒

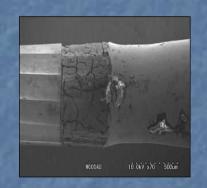
処理後の器具表面から検出された生菌数 (野正6)


器具	処理前 処	加加サン	浸漬			超音波洗浄		
		处理小	1分	5分	20分	1分	5分	20分
カーバイドバー		蒸留水						
		電解水						
リーマ		蒸留水						
		電解水					1/5	

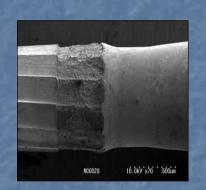
被験菌にはStaphylococcus salivarius (IFO13956)を使用 生菌数(個) : ~10⁸、 : ~10⁶、 - : 10~0


(注:電解水は強酸性水、弱酸性水、中性水(AP水)共通)

ろう付け部



処理前



強酸性水

弱酸性水 中性水(AP水)

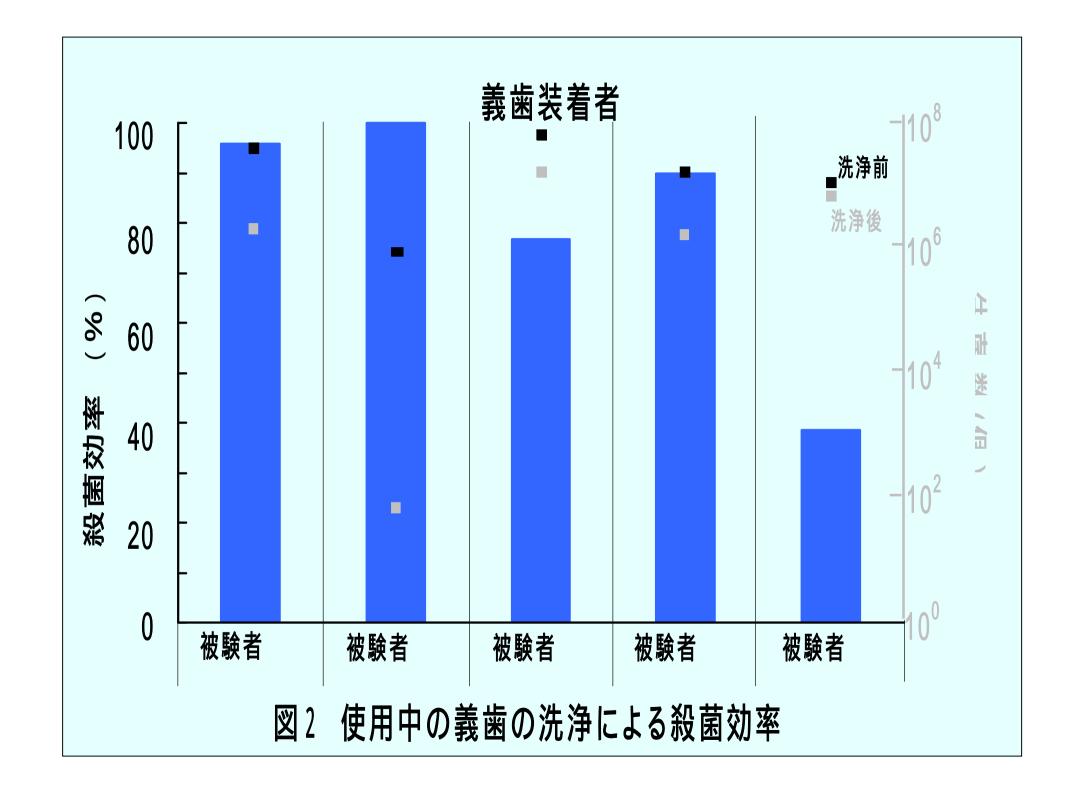
水道水

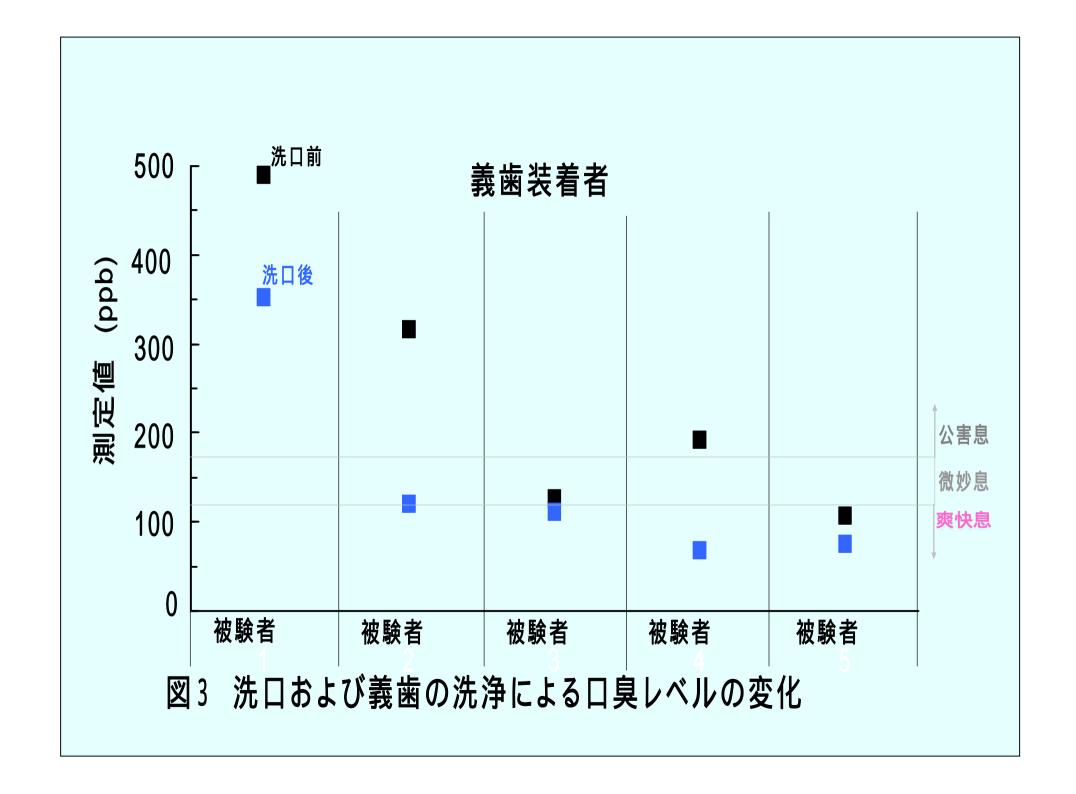
各水中24時間浸漬後の歯科用カーバイド バーの腐食 (野正ら、永松ら)

レジン床義歯の消毒

処理後のレジン表面から検出された生菌数

(永松ら)


印象	処理前	処理水	浸漬		超音波洗浄				
			1分	10分	1分	2分	5分	10分	
アクリルレジン		蒸留水							
		電解水							
		蒸留水							
		電解水							

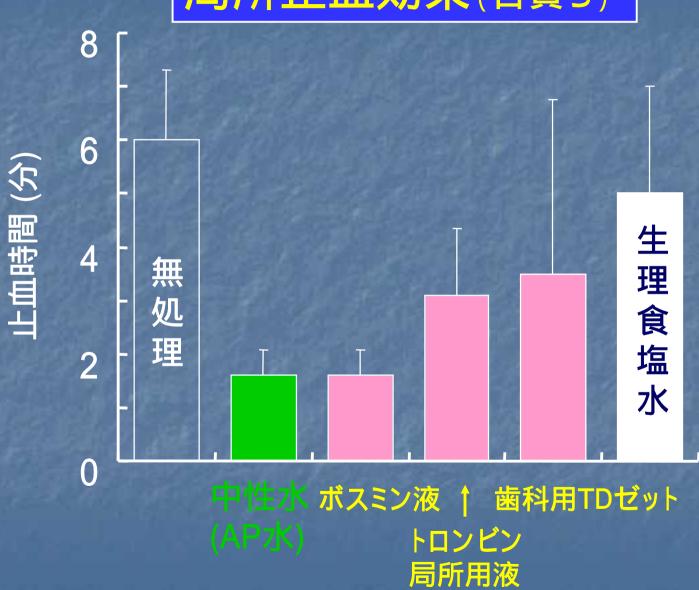

被験菌にはStaphylococcus aureus 209Pを使用

生菌数(個) : ~104、 : ~103、 : ~102、 : ~101、 - : 10~0

(注:電解水は強酸性水、弱酸性水、中性水(AP水)共通)

使用中の義歯のAP水洗浄および洗口による除菌効果と口臭抑制効果

新義歯:


1分間の超音波洗浄で100%除菌 軟性裏装材がある場合は、5~10分間必要

使用中の義歯:

汚れ、有機物が付着しているため、1分間の洗浄 では不十分であるが、口臭はかなり抑制される。

局所止血効果(古賀ら)

疾患の治癒促進効果

口内炎

(多数例) 含喇により即効

歯周病

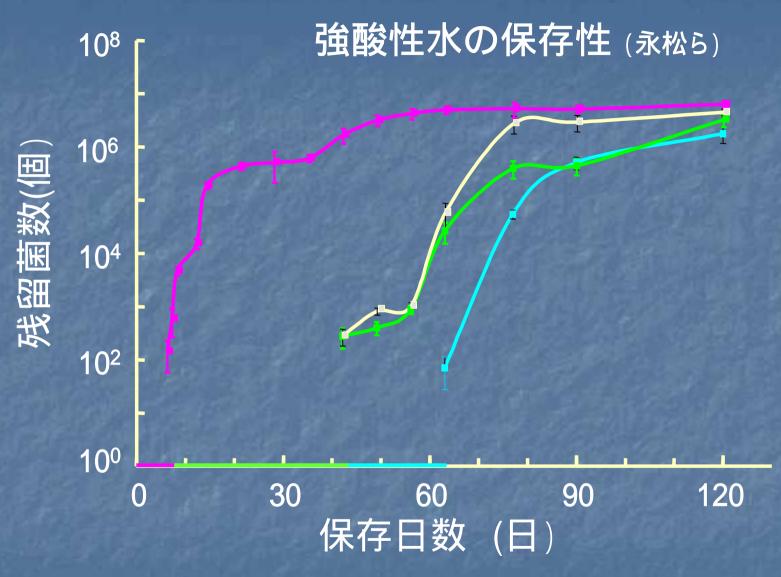
ポケットの洗浄、予後のメンテナンス・予防に有効フィステルに著効

根管洗浄

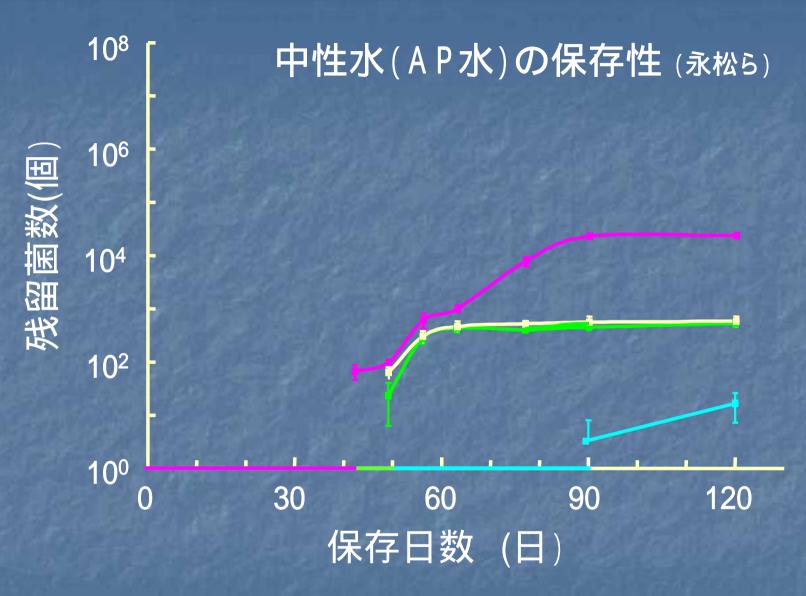
(実験中) 著効 【菌数の減少、早期根充】 感染病巣にはやや弱い

アレルギー性 皮膚炎

(ラテックスグラブによる手の甲の重篤なかぶれ 1例) 浸漬洗浄でかゆみの抑制、10日間で完治


アトピー性皮膚炎

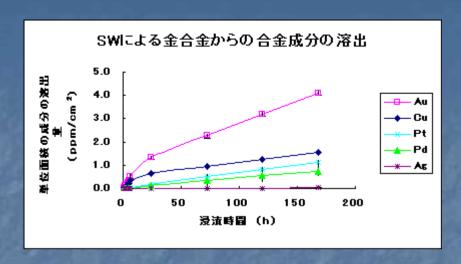
(数例) 風呂上りに噴霧または流水 かゆみの抑制で湿疹の症状・面積が著減 【対症療法】

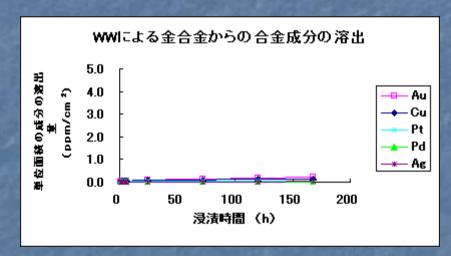

ニキビ 水虫

(多数例) ニキビはつぶした直後の洗浄で完治 水虫は浸漬で完治

保存寿命

: 遮光·密栓·冷蔵保存、 : 遮光·密栓·室温保存 :非遮光·密栓·室温保存、

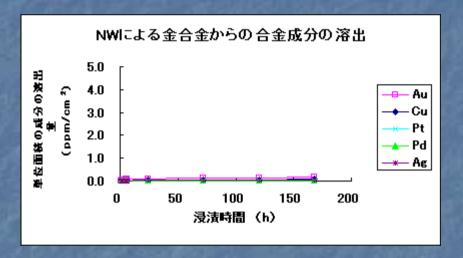

:遮光·密栓·冷蔵保存、 : 遮光·密栓·室温保存 :非遮光·密栓·室温保存、:非遮光·開栓·室温保存

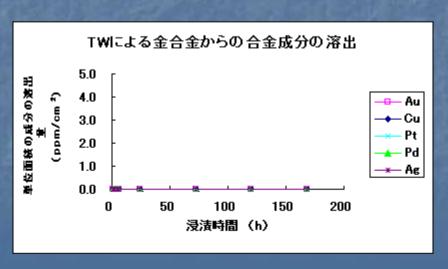

各種電解水中での歯科 用合金の腐食・変色

浸漬試験(董ら)

Tape III gold alloy

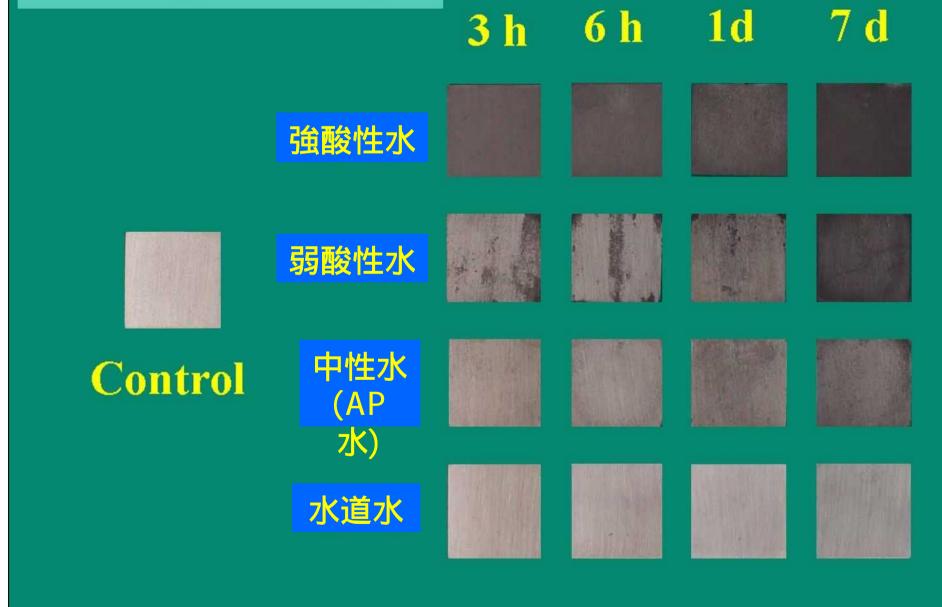
1d 7 d 6 h 3 h 強酸性水 弱酸性水 中性水 Control (AP水) 水道水




SW:強酸性水 WW:弱酸性水

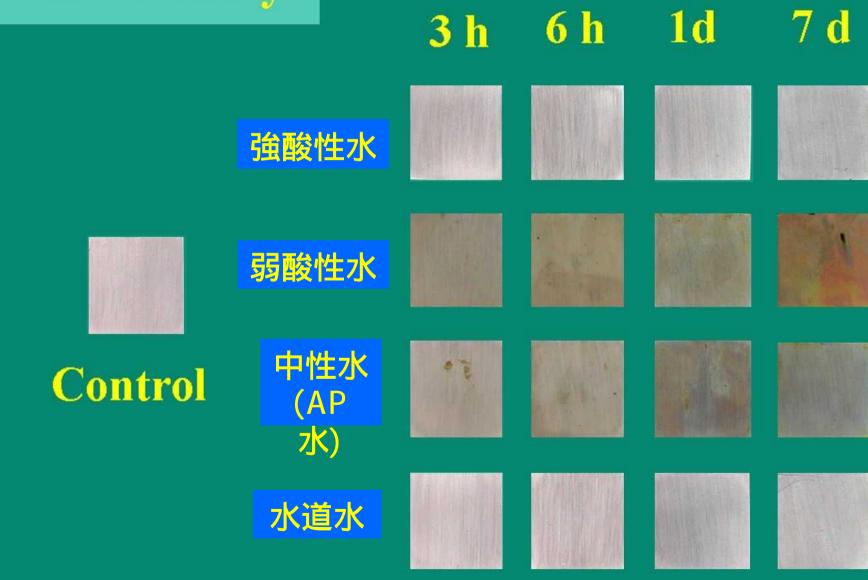
NW:中性水(AP水)

TW:水道水


<u>強酸性水中では多量のAuが</u> <u>溶出する。</u>

Au-Ag-Pd alloy

浸漬試験(董ら)

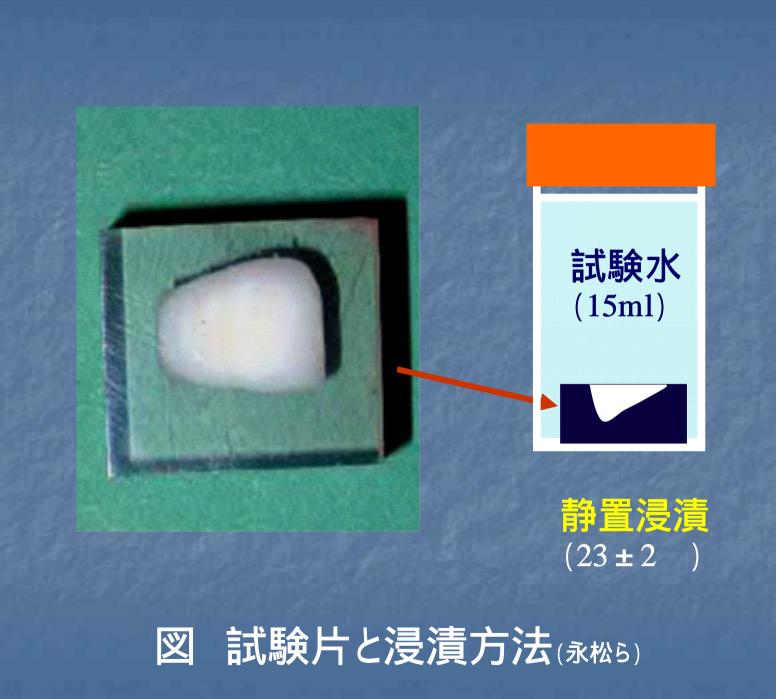

浸漬試験(董ら)

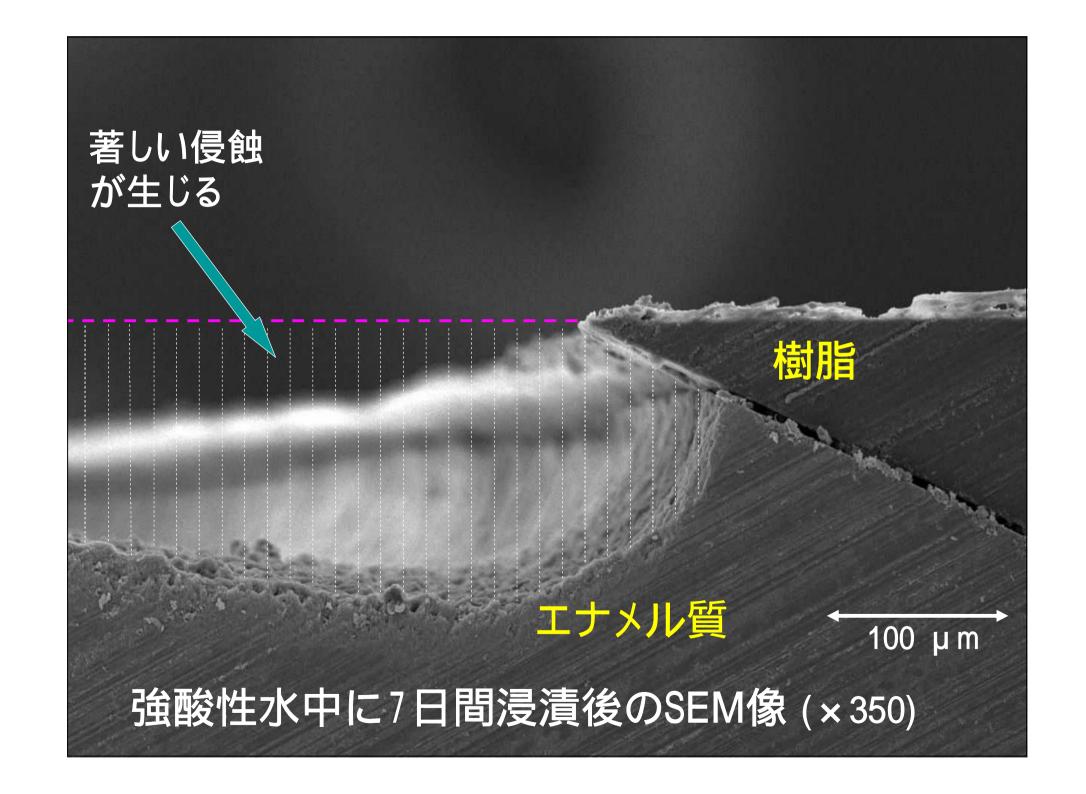
Ag alloy

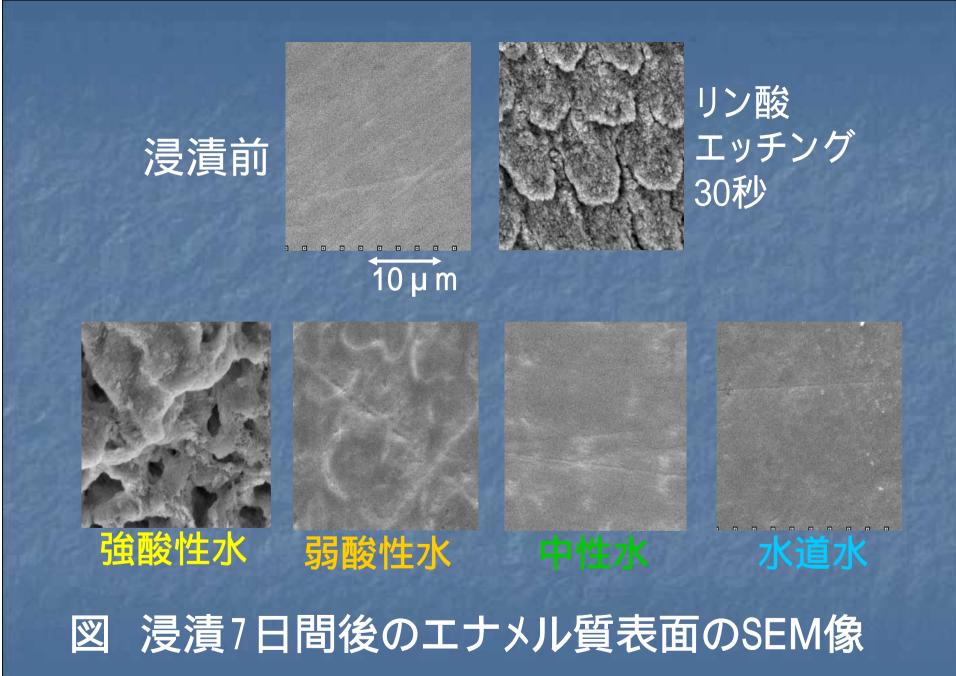
6 h 1d 7 d 3 h 強酸性水 弱酸性水 中性水 **Control** (AP 水) 写真は黒変して見 水道水 えるが、肉眼的に は曇っているだけ。

浸漬試験(董ら)

Co-Cr alloy







3 h 6 h 1d 7 d 強酸性水 弱酸性水 中性水 **Control** (AP 水) 水道水

歯の脱灰・侵蝕試験

 $(\times 1,800)$

AP水を有効利用するための使用上の留意点

AP水の効果的な用途

手指の洗浄·消毒 器材の消毒

ユニット、待合室等の清掃・消毒

根管、歯周ポケットの洗浄・消毒

洗口·含嗽

感染防止

口内炎、創傷等の治癒促進、止血、予後の管理

口臭抑制

ラテックス、レジン等によるアレルギー性皮膚炎の治癒促進

アトピー性皮膚炎の対症療法 ニキビ、水虫の治癒 褥瘡の治癒・予防

長期保存が必要な場合は、容器に満タン、密栓が望ましい。 さらに長期保存するには冷暗所へ。

できるだけ新鮮な内に使用することを心がけること!

短時間処理が最大の利点

長時間浸漬 アルジネート印象が変形する可能性あり 金属が腐食する可能性が大

(AP水では少ないが皆無ではない。)

電解水が付着したまま空気中に放置すると、腐食を助長 印象消毒の場合の金属トレーも同様

<u>処理後水洗またはエタノール洗浄後乾燥すること!</u>

酸性水は流しや配管の金属部品を腐食させる可能性が大 AP水の腐食性は小さいが、同様な習慣をつけておいた方が安全

5. 歯周ポケットの洗浄に強酸性水は使用しない方がよい

強酸性水は歯の脱灰・侵蝕を引きこす可能性大 AP水には脱灰・侵蝕作用なし

6. 洗口・含喇にはAP水が最適

AP水は無味無臭に近く、歯や金属修復物への影響も少なく、洗口・含嗽に 最適

<u>ロ内炎等に対しては、一度洗口して有機物、タンパクを除去した後30秒程度</u> 含嗽すると効果的

加熱しても殺菌効力は変わらない(煮沸も可)

強酸性水、弱酸性水には強い塩素臭、酸臭と不快な味あり 粘膜刺激の可能性もあり

強酸性水は歯の脱灰・侵蝕、金属修復物の腐食・成分溶出の可能性大

7. 飲用しないこと

AP水は大量に飲まない限り毒性はないが、飲まない方がよい

電解水に関する九歯大生体材料学分野(旧歯科理工学講座)の論文等

- 1) 小園凱夫:印象の物理的滅菌法. あぽろにあ21 12:113-121、1995.
- 2) 横山(現永松)有紀、安元かずお、他:電解酸性水によるアルジネート印象の殺菌効果. 歯材器 15(1):98-103、1996.
- 3) Yuki Nagamatsu, et al.: Sterilization of impressions with electrolyzed acid water. J Kyushu Dent Soc 50(3): 515-531, 1996.
- 4) 山中雅文、他: アルジネート印象における浸漬消毒の影響. 九州歯会誌 51(6): 773-783、1997.
- 5) 野正久雄、他:電解水による歯科用器具の消毒処理とその影響. 九州歯会誌 51(6): 784-799、1997.
- 6) 小園凱夫(共著):強電解酸性水の歯科臨床. クインテッセンス出版、東京、1997.
- 7) 永松有紀、他:電解水の歯科への応用. 北九州医工学会誌 9(1): 29-32、1998.
- 8) 小園凱夫:電解酸性水を用いた歯科器材の消毒. 九州歯科大学同窓会会報 54: 18-24、1998.
- 9) 小園凱夫、他:電解酸性水の歯科領域への応用ー歯科器材の消毒処理とその影響ー. QDT 23(5): 59-67、1998.

- 10) 小園凱夫、他:電解酸性水を歯科臨床において有効に利用するために. 九州歯会誌 53(6): 714-720、1999.
- 11) Yuki Nagamatsu, et al.: Application of electrolyzed acid water to sterilization of denture base Part 1. Examination of sterilization effects on resin plate. Dent Mater J 20(2): 148-155, 2001.
- 12) Yuki Nagamatsu, et al.: Durability of bactericidal activity in electrolyzed neutral water by storage. Dent Mater J 21(2): 93-104, 2002.
- 13) 永松有紀、他:電解水の歯科臨床における有効な使用方法 第1報 開業歯科医師 に対する使用現状についてのアンケート調査. 九州歯会誌 57(3): 67-80, 2003.
- 14) Hongwei Dong, et al: Corrosion behavior of dental alloys in various types of electrolyzed water. Dent Mater J 22(4): 482-493, 2003.
- 15) 古賀裕紀子、他:マウス尾部切断創における電解中性水の局所止血効果. 九州歯会誌 58(2): 51-56, 2004.
- 16) 永松有紀、他:電解中性水によるレジン床の殺菌効果. 九州歯会誌 60(1): 24-31, 2006.
- 17) 小園凱夫:電解中性水による消毒処理の有用性. DE: 32-34, 2007.

電解水に関する九歯大生体材料学分野(旧歯科理工学講座)の学会発表

- 1) 横山(現永松)有紀、安元和雄、他:強酸性水による印象の滅菌効果. 第25回日本 歯科理工学会、1995.
- 2) Yokoyama, Y., et al.: Bactericidal activity of high oxidation potential water for impression. 73rd General Session and Exhibition of the AIDR, Singapore. J Dent Res 74 (IADR Abstracts): 599, 1995.
- 3) 永松有紀、安元かずお、他:電解水による歯科用器具の滅菌効果. 第28回日本歯科 理工学会、1996.
- 4) 野正久雄、他:電解水による歯科用器具の消毒とその腐食傾向. 第30回日本歯科理 工学会、1997.
- 5) 山中雅文、他:電解酸性水によるアルジネート印象の消毒と模型精度. 第30回日本 歯科理工学会、1997.
- 6) Kakigawa, H., et al.: Advantageous sterilization of impression by electrolyzed acid water. Third congress on Dental Materials, Hawaii. Transactions: 294, 1997.
- 7) 永松有紀、他:電解水の歯科への応用. 平成9年度北九州医工学術者協会例会、1998.

- 8) 田島清司、他:電解水を用いたせっこうの諸性質. 第59回九州歯科学会、1999.
- 9) 永松有紀、他:電解酸性水による義歯床の殺菌効果. 第34回日本歯科理工学会、 1999.
- 10) 永松有紀、他: 電解酸性水の適切な保存方法. 第60回九州歯科学会、2000.
- 11) 永松有紀、他:電解酸性水の保存による特性変化と殺菌効果への影響. 第36回日本歯科理工学会、2000.
- 12) 永松有紀、他: 各種電解水の保存による特性変化と殺菌効果. 第61回九州歯科学 会、2001.
- 13) 永松有紀、他: 電解中性水の特性と有用性. 第38回日本歯科理工学会、2001.
- 14) Nagamatsu, Y., et al.: Durability of bactericidal activity in electrolyzed acid water by storage. 79th General Session of the AIDR, Chiba. J Dent Res 80 (Special Issue): 715, 2001.
- 15) Nagamatsu, Y., et al.: Effect of temperature of electrolyzed acid water on its properties and durability of bactericidal activity. Fourth congress on Dental Materials, Hawaii. Transactions: 293, 2002.
- 16) 古賀裕紀子、他: AP水による止血効果. 第62回九州歯科学会、2002.

- 17) 永松有紀、他:電解水の歯科診療における使用の現状. 第62回九州歯科学会、 2002.
- 18) 福井朋恵、他:電解酸性水の臨床への応用 第1報 歯学部学生に対する口腔内洗 浄後の使用感のアンケート調査. 第62回九州歯科学会、2002.
- 19) 永松有紀、他:電解水の保温による諸物性および殺菌効力への影響. 第40回日本 歯科理工学会、2002.
- 20) 董 宏偉、他: 各種電解水による歯科用合金の腐食. 第41回日本歯科理工学会、 2003.
- 21) 峰岡哲郎、他:電解酸性水の臨床への応用 第2報 歯科用バーの消毒. 第63回九 州歯科学会、2003.
- 22) 董 宏偉、他: 各種電解水による歯科用合金の変色と腐食生成物. 第63回九州歯科 学会、2003.
- 23) 永松有紀、他: 各種電解水による歯科用金属製器具の殺菌効果と腐食. 第42回日本歯科理工学会、2003.
- 24) Nagamatsu,Y., et al.: Application of electrolyzed neutral water to sterilization of metallic instruments, 82nd General Session and Exhibition of the IADR, Hawaii. 2004.

- 25) 永松有紀、他:電解中性水の歯科臨床への応用 第3報 印象用トレーの消毒. 第64回九州歯科学会、2004.
- 26) 永松有紀、他:電解中性水によるアルジネート印象の殺菌効果. 第44回日本歯科 理工学会、2004.
- 27) 永松有紀、他:電解中性水の歯科臨床への応用 第4報 エナメル質表面への影響. 第65回九州歯科学会、2005.
- 28) 永松有紀、他: 各種電解水のエナメル質表面への影響. 第45回日本歯科理工学 会、2005.
- 29) 谷口守昭、他:電解中性水の殺菌作用と口臭抑制効果. 第45回日本歯科理工学会、2005.
- 30) 永松有紀、他:電解中性水の殺菌および口臭抑制効果. 第21回日本歯科産業学会、2006.
- 31) 永松有紀、他:電解中性水ジェルの開発と殺菌効果. 第48回日本歯科理工学会、2006.